نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • السلسلة
      السلسلة
      امسح الكل
      السلسلة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع المحتوى
    • نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • بلد النشر
    • الناشر
    • المصدر
    • الجمهور المستهدف
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
10,849 نتائج ل "Area measurement."
صنف حسب:
Area
See why area is important, what it is used for, and how to measure area in meaningful ways.
Non-destructive automatic leaf area measurements by combining stereo and time-of-flight images
Leaf area measurements are commonly obtained by destructive and laborious practice. This study shows how stereo and time-of-flight (ToF) images can be combined for non-destructive automatic leaf area measurements. The authors focus on some challenging plant images captured in a greenhouse environment, and show that even the state-of-the-art stereo methods produce unsatisfactory results. By transforming depth information in a ToF image to a localised search range for dense stereo, a global optimisation strategy is adopted for producing smooth results that preserve discontinuity. They also use edges of colour and disparity images for automatic leaf detection and develop a smoothing method necessary for accurately estimating surface area. In addition to show that combining stereo and ToF images gives superior qualitative and quantitative results, 149 automatic measurements on leaf area using the authors system in a validation trial have a correlation of 0.97 with true values and the root-mean-square error is 10.97 cm2, which is 9.3% of the average leaf area. Their approach could potentially be applied for combining other modalities of images with large difference in image resolutions and camera positions.
Phasor measurement units, WAMS, and their applications in protection and control of power systems
The paper provides a short history of the phasor measurement unit (PMU) concept. The origin of PMU is traced to the work on developing computer based distance relay using symmetrical component theory. PMUs evolved from a portion of this relay architecture. The need for synchronization using global positioning system (GPS) is discussed, and the wide area measurement system (WAMS) utilizing PMU signals is described. A number of applications of this technology are discussed, and an account of WAMS activities in many countries around the world are provided.
Edge Length and Surface Area of a Blank: Experimental Assessment of Measures, Size Predictions and Utility
Blank size and form represent one of the main sources of variation in lithic assemblages. They reflect economic properties of blanks and factors such as efficiency and use life. These properties require reliable measures of size, namely edge length and surface area. These measures, however, are not easily captured with calipers. Most attempts to quantify these features employ estimates; however, the efficacy of these estimations for measuring critical features such as blank surface area and edge length has never been properly evaluated. In addition, these parameters are even more difficult to acquire for retouched implements as their original size and hence indication of their previous utility have been lost. It has been suggested, in controlled experimental conditions, that two platform variables, platform thickness and exterior platform angle, are crucial in determining blank size and shape meaning that knappers can control the interaction between size and efficiency by selecting specific core angles and controlling where fracture is initiated. The robustness of these models has rarely been tested and confirmed in context other than controlled experiments. In this paper, we evaluate which currently employed caliper measurement methods result in the highest accuracy of size estimations of blanks, and we evaluate how platform variables can be used to indirectly infer aspects of size on retouched artifacts. Furthermore, we investigate measures of different platform management strategies that control the shape and size of artifacts. To investigate these questions, we created an experimental lithic assemblage, we digitized images to calculate 2D surface area and edge length, which are used as a point of comparison for the caliper measurements and additional analyses. The analysis of aspects of size determinations and the utility of blanks contributes to our understanding of the technological strategies of prehistoric knappers and what economic decisions they made during process of blank production.
Robust fault location of transmission lines by synchronised and unsynchronised wide-area current measurements
This study presents a novel method for fault location of transmission lines by multiple fault current measurements. In contrast to conventional methods, it is proposed to utilise several current measurements, which may be far from the faulted line. The circuit equations of the network are used to express each fault current as a function of fault location. Fault location is then estimated using a least-squares estimation technique. To achieve a robust estimation of fault location, statistical hypotheses-testing is employed for identifying erroneous measurements. The method is applicable to both synchronised and unsynchronised measurements. Moreover, fault location can be estimated regardless of fault type and fault resistance. Furthermore, the method considers the distributed parameter model of transmission line and therefore the results are highly accurate. Electromagnetic transient simulations for the western systems coordinating council 9-bus and a 22-bus test system reveal accurate wide-area fault location as well as successful removal of erroneous measurements.
Design and Implementation of Low-Cost Phasor Measurement Unit: PhasorsCatcher
The need for Phasor Measurement Units (PMUs) is rising as renewable energy sources become more prevalent in power networks since the rate of change of frequency is being deteriorated. Appropriate and accurate network measurements are a requirement for the precise monitoring and control of the system. This paper presents a low-cost PMU development, the so-called PhasorsCatcher, for the frequency and rate of change of frequency measurements in power networks, using sufficient but straightforward modular and reconfigurable friendly technology for its implementation. The entire hardware design, schematics, and instrumentation components are shown. Moreover, the visualisation has been calibrated and verified through an experimentation set-up and the existing electrical and communication standards.
Real-Time Grid Monitoring and Protection: A Comprehensive Survey on the Advantages of Phasor Measurement Units
The emerging smart-grid and microgrid concept implementation into the conventional power system brings complexity due to the incorporation of various renewable energy sources and non-linear inverter-based devices. The occurrence of frequent power outages may have a significant negative impact on a nation’s economic, societal, and fiscal standing. As a result, it is essential to employ sophisticated monitoring and measuring technology. Implementing phasor measurement units (PMUs) in modern power systems brings about substantial improvement and beneficial solutions, mainly to protection issues and challenges. PMU-assisted state estimation, phase angle monitoring, power oscillation monitoring, voltage stability monitoring, fault detection, and cyberattack identification are a few prominent applications. Although substantial research has been carried out on the aspects of PMU applications to power system protection, it can be evolved from its current infancy stage and become an open domain of research to achieve further improvements and novel approaches. The three principal objectives are emphasized in this review. The first objective is to present all the methods on the synchro-phasor-based PMU application to estimate the power system states and dynamic phenomena in frequent time intervals to observe centrally, which helps to make appropriate decisions for better protection. The second is to discuss and analyze the post-disturbance scenarios adopted through better protection schemes based on accurate and synchronized measurements through GPS synchronization. Thirdly, this review summarizes current research on PMU applications for power system protection, showcasing innovative breakthroughs, addressing existing challenges, and highlighting areas for future research to enhance system resilience against catastrophic events.
An Image Processing Method for Measuring the Surface Area of Rapeseed Pods
An image processing method that considers pods to be irregular cylinders composed of several oblique cylinder slices with different diameters was proposed to achieve the “highly accurate, highly efficient and large-scale” target of measuring the surface area of rapeseed pods. The total side area of all the oblique cylinder slices, specifically the pod surface area, was calculated. A high-precision 3-dimensional method was used to measure and correct the actual area of the silique for the first time. The results of the measurement accuracy analysis showed that the image processing method could accurately measure the surface area of rapeseed pods. The average measurement error was 2.46%, and the root-mean-square error (RMSE) was 0.92 cm2. To prove the superiority of this method, we measured the same test samples using four other methods: the Clark formula, the Leng formula, flattening scanning, and quasi-cylinder side area methods. The accuracy and efficiency of the image processing method were much higher than the other four measurement methods. The surface area of multiple pods from 83 rape plants was measured using the image processing method; the results were consistent with the expectations of the experimental design. The 3D measurement and image processing technology were compared and analyzed, and the latter was preliminarily designed for future rape pod seed testing. Thus, this method can provide technical support to measure the surface area of numerous rapeseed pods.